
Assembler Language Assembler Language
"Boot Camp""Boot Camp"

Part 4 - Program Part 4 - Program
Structures; ArithmeticStructures; Arithmetic

SHARE 116 in AnaheimSHARE 116 in Anaheim
March 2, 2011March 2, 2011

IntroductionIntroduction

Who are we?

John Ehrman, IBM Software Group

John Dravnieks, IBM Software Group

Dan Greiner, IBM Systems & Technology Group

IntroductionIntroduction

Who are you?
An applications programmer who needs to write
something in mainframe assembler?
An applications programmer who wants to
understand z/Architecture so as to better
understand how HLL programs work?
A manager who needs to have a general
understanding of assembler?

Our goal is to provide for professionals an
introduction to the z/Architecture assembler
language

IntroductionIntroduction

These sessions are based on notes from a
course in assembler language at Northern
Illinois University

The notes are in turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

1-4

IntroductionIntroduction

The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

ASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

IntroductionIntroduction

Both ASSIST and ASSIST/I are in the public
domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

Everything we discuss here works the same
in z/Architecture

Both ASSIST and ASSIST/I are available at
http://www.kcats.org/assist

IntroductionIntroduction

ASSIST-V is also available now, at
http://www.kcats.org/assist-v

Other materials described in these sessions
can be found at the same site, at
http://www.kcats.org/share

Please keep in mind that ASSIST, ASSIST/I,
and ASSIST-V are not supported by Penn
State, NIU, NESI, or any of us

IntroductionIntroduction

Other references used in the course at NIU:
Principles of Operation (PoO)
System/370 Reference Summary
High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally
online at the IBM publications web site

Students use the S/370 "green card" booklet
all the time, including during examinations
(SA22-7209)

5-8

Our Agenda for the WeekOur Agenda for the Week
Assembler Boot Camp (ABC) Part 1: Numbers
and Basic Arithmetic (Monday - 11:00 a.m.)

ABC Part 2: Instructions and Addressing
(Monday - 1:30 p.m.)

ABC Part 3: Assembly and Execution;
Branching (Tuesday - 1:30 p.m.)

ABC Lab 1: Hands-On Assembler Lab Using
ASSIST/I (Tuesday - 6:00 p.m.)

Our Agenda for the WeekOur Agenda for the Week

ABC Part 4: Program Structures; Arithmetic
(Wednesday - 1:30 p.m.)

ABC Lab 2: Hands-On Assembler Lab Using
ASSIST/I (Wednesday - 6:00 p.m.)

ABC Part 5: Decimal and Logical Instructions
(Thursday - 9:30 a.m.)

Agenda for this SessionAgenda for this Session

EQUate and Extended Branch Mnemonics

Literals, LOAD ADDRESS, and Looping

Internal Subroutines

The MULTIPLY and DIVIDE Instructions

Register EQUates & Register EQUates &
Extended BRANCH Extended BRANCH

MnemonicsMnemonics
In Which We Find More Than In Which We Find More Than

One Way to Say the Same Thing One Way to Say the Same Thing

9-12

Register EQUatesRegister EQUates
It is possible to define symbols using the EQU
instruction

label EQU expression

Then, when the assembler encounters label
elsewhere, it will substitute the value of
expression

We will use expression only as integer
values, but it can be written in other ways

Register EQUatesRegister EQUates

EQU lets us define symbolic register names
 R0 EQU 0
 R1 EQU 1
 ...
 R15 EQU 15

 Many programmers use these to cause
register references to appear in the symbol
cross-reference listing (although HLASM has
an option to produce a much better "register
cross-reference" listing)

Register EQUatesRegister EQUates
Be careful how you think about the symbols,
though - all the assembler does is substitute
values

For example, assuming that register equates
are available, consider the object code for
 L R3,R4 (!) (58300004)
 L R3,R4(R5,R6) (58356004)

Because they can be confusing to learners, it
may be best to not use them

Extended BRANCH MnemonicsExtended BRANCH Mnemonics
The BRANCH ON CONDITION instructions
(BC,BCR) require a branch mask

We have so far given the mask as B'xxxx'

There are, however, special mnemonics
which incorporate the mask into the "op code"

13-16

Extended BRANCH MnemonicsExtended BRANCH Mnemonics
So, for example, after a compare instruction,
the extended mnemonic
 BE addr (Branch on Equal)
can be used in place of
 BC B'1000',addr

The BE extended mnemonic, for example, can
be thought of as opcode 478

Most of the extended mnemonics can be
found in the "green card" on p. 21-22

Literals,Literals,
 LOAD ADDRESS, LOAD ADDRESS,

and Loopingand Looping
In Which We Face a Most In Which We Face a Most

Difficult But Very Important Difficult But Very Important
Concept: Addresses Concept: Addresses

LiteralsLiterals
Recall that the DC instruction defines an area
of storage within a program, with an initial
value

Since that value is only initial, it can easily be
changed (and very often is)

For example, a counter to be incremented
may be initially defined as

COUNT DC F'0'

LiteralsLiterals
There is also a need for a "constant," a value
in storage which is intended to retain that
value
 A 4,ONE
 ...
ONE DC F'1'

 We can instead code the constant as part of
the instruction, in place of the usual second
operand memory address:

 A 4,=F'1'

17-20

LiteralsLiterals
In this case, the second operand is coded as
a literal, which is indicated by the preceding
equal sign

This is also good documentation, as the value
is seen immediately, rather than after
searching the program listing for a data area

But where will the storage for this literal be?
With a DC (or DS) statement, the location is
exactly where the DC or DS occurs

LiteralsLiterals
A literal, on the other hand, will be located in a
"pool" of literals whose location is defined by
using the LTORG (LiTeral pool ORiGin)
instruction

As many LTORGs as needed may be used,
and each creates a pool for all previous
"unpooled" literals

This means the same literal (e.g., =F'1')
may appear in multiple pools

The LOAD ADDRESS InstructionThe LOAD ADDRESS Instruction
This is very simply stated:
label LA R1,D2(X2,B2)
Replaces the contents of register R1 with the
effective address of the second operand,
D2(X2,B2)

Here may be a help to understanding:
 L 5,WORD is the same as the pair:

 LA 5,WORD followed by
 L 5,0(,5)

The LOAD ADDRESS InstructionThe LOAD ADDRESS Instruction
Sometimes only D2 is specified - that is, X2
and B2 are zero:

 LA 5,4 (0<=D2<=4095)

Note: this is the same as LA 5,4(0,0)

This is a common method of placing a small
number in a register without accessing
memory

21-24

The LOAD ADDRESS InstructionThe LOAD ADDRESS Instruction
LA may also be used to increment (but not
decrement) a non-negative value in a register

 LA 6,1(,6) Increase c(R6) by 1

N.B. The high order bit or byte of R6 is set to
zero, depending on something called
addressing mode (beyond our scope)

* The following program builds a table of fullwords and then exits
* the completed program. It reads one number off each input card,
* recognizing the end of input when a trailer card containing
* 999999 is encountered. The logic of the program is:
*
* Step 1. Initialize R3 to point to the first entry in the table.
* R4, which is used to count the entries in the table, is
* Initially set to 0.
*
* Step 2. Read the first card.
*
* Step 3. Check for the trailer. If it is the trailer go to Step 6
* to exit the program.
*
* Step 4. Put the number into the table (adding 1 to the count of
* entries and incrementing the pointer to the next entry).
*
* Step 5. Read the next card and go back to Step 3.
*

* Step 6. Exit the program.

Demo Program to Build a Table - 1Demo Program to Build a Table - 1

TABUILD CSECT
 USING TABUILD,15
*
***<Step 1> Initialize counter and pointer to next entry
*
 SR 4,4 Set count of entries to 0
 LA 3,TABLE Point at first entry (next one to fill)
*
***<Step 2> Read the first card
*
 XREAD CARD,80 It is assumed that there is a card and
* that it contains a number
 XDECI 2,CARD Convert input number to binary in R2
*

Demo Program to Build a Table - 2Demo Program to Build a Table - 2
***<Step 3> Check for trailer
*
TRAILCHK C 2,TRAILER Check for trailer 999999
 BE ENDINPUT
*
***<Step 4> Add the number to the table
*
 ST 2,0(,3) Put number into current slot in the table
 LA 4,1(,4) Add 1 to count of entries in the table
 LA 3,4(,3) Move entry pointer forward 1 entry
*
***<Step 5> Read the next card and get the number into R2
*
 XREAD CARD,80
 XDECI 2,CARD The next number is now in R2
 B TRAILCHK
*
***<Step 6> Return to the caller
*
ENDINPUT BR 14 Exit from the program

Demo Program to Build a Table - 3Demo Program to Build a Table - 3

25-28

 LTORG
CARD DS CL80 Card input area
TABLE DS 50F Room for 50 entries
TRAILER DC F'999999'
 END TABUILD
$ENTRY
123
456
789
234
567
890
345
999999

Demo Program to Build a Table - 4Demo Program to Build a Table - 4 Looping Using BCT and BCTRLooping Using BCT and BCTR
The loop we saw in the demo is controlled by
the number of records in the input file

Sometimes, a loop is to be executed n times
1. Set I equal to n
2. Execute the body of the loop
3. Set I to I-1
4. If I g 0, go back to 2
5. Otherwise, continue (fall through)

This loop is always executed at least once

Looping Using BCT and BCTRLooping Using BCT and BCTR
There is a single instruction which implements
this loop control - BRANCH ON COUNT

 label BCTR R1,R2

 label BCT R1,D2(X2,B2)

The logic is
1. Decrement R1 by one
2. If c(R1) g 0, branch; otherwise, continue

Looping Using BCT and BCTRLooping Using BCT and BCTR
In BCTR, if R2 = 0, no branch is taken,
although the R1 register is still decremented

LOOP LA 12,200
 ...
 BCT 12,LOOP How many times?

 LA 10,LOOP
 LA 11,413
LOOP ...
 BCTR 11,10 How many times?

 LA 0,LOOP
 LA 1,10
LOOP ...
 BCTR 1,0 How many times?

29-32

Internal Subroutines Internal Subroutines

In Which We Show That You In Which We Show That You CanCan
Go Home Again, and How Go Home Again, and How

The Program Status Word (PSW)The Program Status Word (PSW)
The PSW is an eight-byte aggregation of a
number of important pieces of information,
including

The address of the next instruction
The Interruption Code
The Condition Code (CC)
The Program Mask
The Instruction Length Code (ILC) (in ASSIST
only, not in z-Architecture)

The Program Status Word (PSW)The Program Status Word (PSW)
N.B. - The "basic" PSW format used in
ASSIST dates to the 1970s and is not current;
even so, it does have some fields which will
help us

The PSW fields in ASSIST that we want are
Bits 16-31: Interruption Code
Bits 32-33: Instruction Length Code
Bits 34-35: Condition Code
Bits 36-39: Program Mask
Bits 40-63: Next Instruction Address

The Program Status Word (PSW)The Program Status Word (PSW)
The Instruction Length Code (ILC) has the
following meaning for its four possibilities
ILC (Dec) ILC (Bin) Instr types Op Code

Bits 0-1
Instr

Length

0 00 Not
Available

1 01 RR 00 One
halfword

2 10 RX, RS, SI 01 Two
halfwords

2 10 RX, RS, SI 10 Two
halfwords

3 11 SS 11 Three
halfwords

33-36

The Program Status Word (PSW)The Program Status Word (PSW)
The Instruction Length Code can be used to
determine the address of the current
instruction
1. Multiply by two to get the number of bytes in the

current instruction
2. Subtract it from the address of the next

instruction

This is very important in analyzing a dump
from a program problem

BAL/BALR and SubroutinesBAL/BALR and Subroutines
There is a very important instruction which is
used to control access to subroutines,
BRANCH AND LINK

The RR and RX formats are

label BALR R1,R2

label BAL R1,D2(X2,B2)

BAL/BALR and SubroutinesBAL/BALR and Subroutines
Their operation is simple
1. Copy the 2nd word of the PSW to register R1

2. Branch to the address given by the second
operand

Step 1 of the operation of BAL/BALR copies
to register R1 the address of the next
instruction (this is very important)

If in 24-bit addressing mode, the ILC, CC, and
Pgm Mask are also copied

BAL/BALR and SubroutinesBAL/BALR and Subroutines
This operation means that, if we want to
execute a subroutine called SORT, we can
1. Use BAL 14,SORT in the main routine, to

place in R14 the address of the instruction
following the BAL, then branch to SORT

2. Use BR 14 at the end of the SORT
routine to return and resume the main routine

The RR form, BALR, is very common,
especially BALR 14,15 for "external"
subroutines

37-40

BAL/BALR and SubroutinesBAL/BALR and Subroutines
A special use of BALR occurs when R2 = 0;
then no branch occurs after placing the
address of the next instruction in R1:

 BALR 12,0
 USING NEWBASE,12
 NEWBASE ... (next instruction)

This can be used to establish a base register
when the current location is unknown

The STM and LM InstructionsThe STM and LM Instructions
Having subroutines is all very nice, but with a
limited number of registers, it is useful for
subroutines to save registers at entry, then
restore them at subroutine exit

A third instruction format, RS, is used. Our
first RS instruction is STORE MULTIPLE
 label STM R1,R3,D2(B2)
Copies the contents of the range of registers
R1 through R3 to consecutive words of
memory beginning at D2(B2)

The STM and LM InstructionsThe STM and LM Instructions
Thus, STM 4,8,SAVE would copy the
contents of R4, R5, R6, R7, and R8 to the five
fullwords beginning at location SAVE

And STM 14,1,SAVE would copy R14,
R15, R0, and R1 to four consecutive fullwords
at location SAVE (note the register-number
wrap-around)

hOPhOPhR1hR3 hB2hD2hD2hD2 is the encoded form of
an RS instruction

The STM and LM InstructionsThe STM and LM Instructions
The inverse operation is LOAD MULTIPLE
 label LM R1,R3,D2(B2)
Copies the contents of the consecutive words
of memory beginning at D2(B2) to the range
of registers R1 through R3

Since one of the responsibilities of a
subroutine is to assure that registers contain
the same contents at exit that they did at
entry, we can use STM and LM to save and
restore them

41-44

Saving and Restoring RegistersSaving and Restoring Registers
ROUTINE STM R0,R15,SAVEAREA Save all regs
 ...
 body of routine
 ...
 LM R0,R15,SAVEAREA Restore all regs
 BR R14 Return to caller
 ...
SAVEAREA DS 16F Store regs here

Type A Data: AddressesType A Data: Addresses
 label DC A(exp) [or DS A]

If exp is an integer (non-negative in ASSIST),
the generated fullword will have the binary
representation of the integer (same as
F'exp')

If exp is the label of an instruction or a data
area, or is of the form label+n or label-n,
the generated fullword will contain the
appropriate address

Type A Data: AddressesType A Data: Addresses
 label DC A(exp) [or DS A]

If exp is the label of an EQU of a
non-negative integer, then the symbol is
interpreted as a non-negative integer, and the
generated fullword will have the binary
representation of the integer

Type A Data: AddressesType A Data: Addresses
The following are examples
 DC A(123) generates 0000007B
 DC A(R12) generates 0000000C
 DC A(SAVE) generates addr of SAVE

Very important: All that is known at assembly
time is the relative location, not the memory
address; it is left to the "program loader" to
adjust the relative location at execution time,
to make it the address in memory

45-48

Type A Data: AddressesType A Data: Addresses
But why bother? Why not just use LA? The
answer is that a single base register can
address only 4096 bytes (000-FFF)
 LA R4,TABLE3 This fails!
*
 L R4,ATABLE3 This works!
 ...
ATABLE3 DC A(TABLE3)
TABLE1 DS 1024F (= 4096 bytes)
TABLE2 DS 1024F
TABLE3 DS 1024F
 ...

The MULTIPLY and The MULTIPLY and
DIVIDE InstructionsDIVIDE Instructions

In Which We EncounterIn Which We Encounter
"Higher" Math "Higher" Math

MultiplicationMultiplication

MULTIPLY, like ADD and SUBTRACT,
comes in two flavors: RR and RX

Both RR and RX require the first operand to
be an even/odd pair of registers, implicitly
specified by the even-numbered register

The RR and RX formats are
 label MR R1,R2

 label M R1,D2(X2,B2)

MultiplicationMultiplication

The multiplicand is the word in register R1+1
(the 2nd of the pair)

The multiplier is either the word in register R2
or the word whose address is D2(X2,B2)

The product will be two words long in the
even/odd pair R1/R1+1

The Condition Code is not changed by
MULTIPLY

49-52

MultiplicationMultiplication

R1

R2 or
D2(X2,B2)

R1+1

Multiplicand

Multiplier

R1 R1+1

Product

(even) (odd)

(Word in reg
or word in
memory)

s

s

s

Multiplication ExamplesMultiplication Examples
For example: if c(R9) = 00000003,
c(R7)=FFFFFFFD (-3), and c(R6) is anything

Then MR 6,9 leaves R9 unchanged and
the result in R6/R7 = FFFFFFFF FFFFFFF7
(which is -9 in decimal)

Note that the magnitude of the result must be
very large before the even-numbered register
has anything besides sign bits

Multiplication ExamplesMultiplication Examples
Note that MR 8,9 squares the value in
R9, with the result in R8/R9

What does MR 8,8 do?

Some examples follow, all of which assume:
c(R0)=F01821F0, c(R1)=FFFFFFFF
c(R2)=00000003, c(R3)=00000004
 WORD1 DC F'10'
 WORD2 DC F'-2'

Multiplication ExamplesMultiplication Examples
MR 2,1: R2/R3 = FFFFFFFF FFFFFFFC

MR 2,2: R2/R3 = 00000000 0000000C

MR 2,3: R2/R3 = 00000000 00000010

M 2,WORD1
 R2/R3 = 00000000 00000028

M 0,WORD2
 R0/R1 = 00000000 00000002

53-56

DivisionDivision

DIVIDE also comes in RR and RX formats

Both RR and RX require the first operand to
be an even/odd pair of registers, implicitly
specified by the even register

The RR and RX formats are
 label DR R1,R2

 label D R1,D2(X2,B2)

DivisionDivision
The dividend (numerator) is two words long in
the even/odd pair R1/R1+1

The divisor is either the word in register R2 or
the word whose address is D2(X2,B2)

The remainder will be in register R1 with sign
the same as the dividend's

The quotient will be in register R1+1 with
sign following the usual rules of algebra

DivisionDivision

R1

R2 or
D2(X2,B2)

R1+1

Dividend

Divisor

R1 R1+1

Quotient

(even) (odd)

(Word in reg
or word in
memory)

s

s

s s

Remainder

DivisionDivision
If the quotient cannot be represented as a
32-bit signed integer, a "fixed-point divide"
exception occurs; this also happens if the
divisor is zero

N.B. The dividend will often fit into a single
register, but the sign must be correct in both
registers of the pair

This can be assured by first multiplying by 1
(product is then in the register pair)

57-60

Division ExamplesDivision Examples

Some examples, all of which assume:
c(R2) = 00000000, c(R3) = 00000014 (20)
c(R4) = FFFFFFFF, c(R5) = FFFFFF10 (-240)
c(R1) = 00000003
 WORD1 DC F'-4'
 WORD2 DC F'14'

 DR 2,1 (so dividend is in R2/R3)
 R2/R3 = 00000002 00000006 (2,6)

Division ExamplesDivision Examples
DR 2,4
 R2/R3 = 00000000 FFFFFFEC (0,-20)

DR 2,5
 R2/R3 = 00000014 00000000 (20,0)

DR 4,1 (so dividend is in R4/R5)
 R4/R5 = 00000000 FFFFFFB0 (0,-80)

D 2,WORD1
 R2/R3 = 00000000 FFFFFFFB (0,-5)

Division ExamplesDivision Examples
D 2,WORD2
 R2/R3 = 00000006 00000001 (6,1)

D 4,WORD1
 R4/R5 = 00000000 0000003C (0,60)

D 4,WORD2
 R4/R5 = FFFFFFFE FFFFFFEF (-2,-17)

Next TimeNext Time
Tomorrow, we will look at how decimal
arithmetic is performed, and how numbers are
converted from binary to decimal to character
(and the reverse)

Accurate decimal arithmetic is an important
characteristic of z/Architecture, particularly for
financial applications

We'll also cover the instructions which perform
the operations AND, OR, and XOR

61-64

